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® Number Systems, Arithmetic, and codes

M Digital Systems vs. Analog Systems
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Digital Systems vs. Analog Systems

Digital System

= Information is represented and processed by a finite
number of discrete digits.

= Example: Binary Strings of 1’s and 0’s are used to
represent information.

Analog System

= Information is represented and processed along a
continuum.

= Example: Consider making measurements with a
ruler.

B Number Systems

Positional Number Systems

The above is a general form of a power series in
radix r. A number N expressed in base-r system
has coefficients multiplied by powers of r:

N=d,  * M+ d ,* M2+ . .d " +dy*r0+ d_*r'+
do*r2+ od g trm

B Binary Arithmetic

Binary Number

Two discrete values are used in digital systems
only.

The values of a binary number could be

= False/True

= Low/High Volt :Al_imr:

= 0/1 |

= Yes/No Low

= Go/No Go - t{ori)

B Ternary Arithmetic
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Ternary Number

Similar to the binary number, but the number of
ternary number includes {0, 1, 2}. There are total
three digital numbers to represent ternary system.

B Binary and Decimal Number Base Conversions

Polynomial Method of Number
Conversion (Givone Text Book)

The number N, of Base-r1
Nty = (d1Gpp ~ dydo. dq d-m)(r1> »0<=d;<=(r1-1)

Neety = aageny ™ F1™ ey + raeny ™ 11200y + -+ dogeay ™ 140 +

Decimal to Binary Conversion

A decimal number N, indicating as “i.f’ (i.e.
3.13159), includes two parts: the first part is
integer part, i/, and the second part is fractional

art, f. . .
part, ‘ . . ety Tty + o F ey ™ 1)
The progedures of decimal numb.er to binary = oy 10™ )+ gy 10720y + -+ gy * 10%
conversion are shown as follows: g " 107+ + oy * 107
1. Convert integer part Note the quantity of 2 in binary is represent by 10,

> Convert fractional part Note the quantity of 3 in ternary is represent by 103,

3. Combine integer and fractional parts together The number N, of Base-r2
N2y = dnotgz) * 1™ 2y + nagz) ™ 1" + - + i)™ 11 ™2y

N+, is converted into of N,

B [terative method of number

conversion

Iterative method of converting integer
(Givone Text Book)

To convert an integer in base r; into its
equivalent integer in r,.

Divide the number by r,, then the remainder is
the 0-th order digit.

Repeat the previous step to get 1st order digit,

Repeat the division process of r, until the
remainder is zero.

B Signed and Unsigned Numbers
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Signed Numbers

Signed numbers denote whether the

magnitudes is positive or negative.

The form to show a singed number is called as

“sign-magnitude representation”.

The sign-magnitude representation includes

the following methods:

= Proceeding with signed symbol, (+) or (-). (used in
regular number representation)

= In digital system, it utilizes the binary digit 0 to
denote the plus sign and the binary digit 1 to denote
the minus sign.

B Complements of Number

Complement notation

The complement notation uses the most
significant bit represents the sign bit, indicating
whether the number is positive or negative.

B (Overflow in unsigned and signed number

Overflow

the binary number operations need n + 1 digit to
do n digit number operations.

B Floating number (IEEE-754 standard)
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B Binary Codes (BCD Codes)

Decimal Codes

BCD
= Binary Coded Decimal*
Represents decimal digits
= 0-9
It will need 4 binary digits to represent ten numbers, but
leaves 6 combinations un-used.
Weighted Codes
= Positional of number indicates weight (wzw,w,w,)
A number N = Wa.b3+Wy by + Wb +Wo.by
BCD codes include several different forms, such as 8421,
2421, 5421, 7536, 5043210 codes.

B Unit-Distance Codes

Unit-Distance Codes

# 3: Non-weighted decimal codes

Only a single bit

Decimal Number | Gray Code
changes between any 0 000
two successive coded 2 0011
H 3 0010
integers I o110
5 0111
The most popular of = 1o
the unit distance codes 7 0100
8 1100
are the Gray codes B 101
(named after their n ol
inventor Frank Gray). 12 1010
13 1011
14 1001
15 1000

B ASCII & Unicode

Angular position encoders. (a) Conventional
binary encoder. (b) Gray code encoder.
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American Standard Code for Information Interchange (ASCII)

BB, B;
B.B.B:B. 000 o001 oo o 100 101 110 m
0000 NULL DLE 5P o @ P : P
0001 SOH DCl ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C 5 < 5
0100 EOT DC4 5 4 D T d 1
o1m ENOQ MNAK %o 5 E u e u
(LB ACK SYN & & F v f ¥
o111 BEL ETB 7 G w £ w
1000 BS CAN ( 8 H X h X
1001 HT EM ] 9 I Y i ¥
1010 LF SUB o : J r A i z
1011 VT ESC + : K I k |
1100 FF F§ < L i 1 I
1101 CR GSs B M | m ]
1o S0 RS > N - n -
1111 I uUs ? O o DEL

® FError-Detection Codes (Parity Code)

Error-Detection Codes

A code is said fo be n-error detecting if the minimum of n
errors that cannot be detected is n + 1

= Error defined as a bit being complemented erroneously
Distance between two code groups

® The number of bits that must change so that the first code group
becomes the second

Minimum Distance

= Minimum distance between any two valid code groupsin a
coding scheme

Maximum number of detectable errors
m D=M-1

= [ is the error detecting capability of code
= M minimum distance

® FError Correction Codes (Hamming Code)

Hamming Code

Derived by R W. Hamming

Considerthe case of fourinformation bits
Three parity bits are included

Each calculated over a specified set of bits
Let p; represent parity bit /

Let b; represent parity information bit 7

76 543 21 :Positions

babsbapsbipapy - Code Group Format

Py - Even parity over positions 1,3, 5, 7
o - Even parity over positions 2, 3, 6, 7
p= - Even parity over positions4, 5, 6, 7
Hamming code can detect and correct an error bit.
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® BOOLEAN ALGEBRA AND COMBINATIONAL NETWORKS

B [ntroduction to Boolean Algebra

Intro. to Boolean Algebra

An algebra for symbolically representing problems in logic
and analyzing them mathematically.

Based on work of George Boole, an English mathematician,

= Published “An Investigation of the Laws of Thought”,

= Published in 1854

Claude E. Shannon, Massachusetts Institute of Technology,

= Showed how a Boolean algebra could be applied to certain
engineering problems.

Switching Circuit Theory

= The study of Boolean algebra applied to logic design

= For any logic system consisting of elements with two-valued
characteristics

= To describe terminal properties of a logic network
= To manipulation the network realization.
= To simplification the network realization.

Intro. to Boolean Algebra

The logic network described by Boolean
algebra is divided into two categories:
1. Combinational networks

The outputs of a logic network are a function of
currentinputs at any instant.

2. Sequential networks

The outputs of a logic network are notonlya
function of current inputs but, in addition, depend
upon the past history on inputs,i e the states of
variables stored in memory.

B Theorems & Postulates of Boolean Algebra

Postulates of Boolean Algebra

P1: Operations (+) and (-) are closed
x+yebB (6)
x'yeb

P2: Identity Elements

= |dentity elements exist, such that for every element x
B
O+x=x+0=x (9)
1-x=x-1=x (Duality)

P3: Commutative Law
x+y=y+tx (12)
X y=y-x (Duality)

Closure:
FX SandY SthenX.Y §
X SandY Sthen X+Y S

B Two-Valued Boolean Algebra

Two-Valued Boolean Algebra

Postulates of Boolean Algebra

The objective of this topic is to establish a
relationship between a Boolean algebra and
logic networks and how to show a Boolean
algebrais a usefultoolin logic network analysis
and design.

The two-valued Boolean algebra is also known

as the switching algebra.

= The analysis and design of logic network, it is
common to refer to the two-valued Boolean algebra

simply as a Boolean algebra without additional
qualification.

P1: Operations (+) and (-) are closed
x+yeb (6)
xyeb

P2: Identity Elements

= |dentity elements exist, such that for every element x
B
O+x=x+0=x 9)
1-x=x1=x (Duality)

P3: Commutative Law
x+ty=ytx (12)
X y=yx (Duality)

Closure:

HX Sand¥Y Sthen XY §
WX Sand¥Y Sthen X+Y §
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B Boolean Formulas and Functions

Boolean Formulas and Functions

Boolean expression orformulas are constructed
by connecting the Boolean algebra constants
and variables with the Boolean operations.
Boolean expressions are used to describe
Boolean functions.
= Example:

Boolean expression : (X' +y) z

Boolean function: f(x,y,z) = (X' +y)z
The value of Boolean function is determined by
any set of values of variables.

B The Truth Table

The Truth Table Truth table for the function f=(x’+y)z
A table listing the outputs for every possible combination x y z X 4y f= (4 v
of inputs foran n-input function
Inputs 0 0 0 1 1 0

= Enumerated on left

= Count from [0.. [][] (all zeros) to [1...1] (all ones) in binary to 0 0 1 1 1 1
enumerate all values 0 1 0 1 1 0

Outputs

= Enumerated on right 0 1 1 1 1 1

Columns 1 o 0 0 0 0

= n+ 1 (minimum)

= Qften intermediate values are listed instead of just the output of 1 0 1 0 0 0
the function

Rows 1 1 1} 1} 1 0

LI 1 1 1 1} 1 1

B C(Canonical Formulas of Boolean Algebra & Manipulations of

Boolean Formulas

Canonical Formulas Manipulations of Boolean Formulas
2 types of expressions are obtained A Booleanfunctionmay be represented in
directly from a truth table differentforms, with the same Boolean functions,

by applying the postulates and theorems of a

= Minterm canonical formula
Boolean algebra.

Special case of disjunctive normal formula
27 minterms exist for n Boolean variables

= Maxterm canonical formula
Special case of conjunctive normal formula
27" maxterms exist for n Boolean variables

B (Canonical Forms
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Canonical Forms Minterm Canonical Formulas
The standard form of an equation consists of The significance of the minterm cancnical
productor sum terms formulais to uniquely describe a complete

= Referred to as the canonical form Boolean function.
= Two forms

It can transferany Boolean functionand

= POS expression into a minterm canonical formula.

= S0P

Maxterm Canonical Formulas

The maxterm canonical formula can be uniguely
described a complete Boolean function.

It cantransferany Boolean functionand
expression into a minterm canonical formula.

B (Gates and Combinational Networks

Logic Networks Gates

Logic elements: Electronic circuits have only two possible steay-

= Gates: electronic circuits whose terminal properties Statr'-: voltage signal values appearatthe
corresponding to various Boolean operations terminals.

= Flip-flops: memory devices which can store logic = and-gate:
constant. perform Boolean AND operation

Logic diagram: the drawing of logic elements. = or-gate:

Logicnetworks perform Boolean OR operation

= The interconnections of gates and flip-flops are = not-gate
formed the logic networks perform Boolean MOT operation

= Itis also called a realization (or implementation) of a Each gate has its specified logicdiagram.

Boolean algebra.

B [ncomplete Boolean Functions and Don’ t-Care Conditions

10
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Incomplete Boolean Functions and
Don’t-Care Conditions

Complete Boolean function® All the combinations of n
input variables of a Boolean expression have uniguely
functional value.
Incomplete Boolean function: Not every combinations
have been assigned a value to the output, marked with
the symbol “x”".

An example of athree-variable incomplete Boolean function and its complement

b3 ¥ 2 13 2 f

- - - oooo

- )
oo -2~ o
e = T = T
- - - ocooo
- =1
— oo -2~ o2
R )

B Additional Boolean Operations and Gates

Additional Boolean Operations and Gates

NAND gates
NOR gates
Exclusive-OR gates

B Physical Properties of Logic Gates

Gate Properties

Logic families

= TTL (transistor-transistor logic)

m ECL (emitter-coupled logic)

m CMOS (complementary metal-oxide-semiconductor
logic)

® Simplification of Boolean Expressions

11
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Formulation of the Simplification
Problem

The factorfor evaluating the simplification of
logic networks.

= Cost

= Reliability

= Response Time (i/p to o/p)

B Prime Implicates and Irredundant Conjunctive Expressions

Prime Implicants and Irredundant
Disjunctive Expressions

Implies: Booleanf, andf,, if we sayf, implies f,
only if there is no assignmentof values to the n
variables thatmakesf, equalto 1 and f, equalto

0.
If f,implies f,, thenwhenf,= 1 itis equalto say
f, =1, too.

B KARNAUGH MAPS

KARNAUGH MAPS

A graphical method, developed by Veitch and
modified by Karnaugh, to determine the
implicants.

A Karnaugh map is a geometrical configuration
of 2" cells. Each cell is corresponding to a row of
a truth table of an n-tuple Boolean function.

The adjacent cells have only one variable
differentthan each other.

B Using Karnaugh Maps to Obtain Minimal Expressions for Complete

Boolean Functions

12
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Prime Implicants and Karnaugh Maps

By using the Karnaugh map, a Boolean
expression can be minimized by eliminating
unnecessary (redundant) subcubes.

Assume a set of subcubes have been selected
all 1-cells and no 0-cells being picked.

= These corresponding product terms with respect to
selected subcubes are implicants.

Questions:

How can one selectthe prime implicants from

these subcubes.

We are going to demonstrate by using an

example.

Algorithm to find all prime implicants.

Figur=4.14

Give a Karnaugh map, shown in the slide

® The subcube Ais an implicant, x'yz’.

= The subcube A clearly can be included in subcube B,
whose logic expression is yz'.

= Since Ais includedin B
(A subsumes B}, the

' ¥z
subcubeisnot a 00 01 11 T

prime implicant. i‘-
)

= There is no other of o 0 0
bigger subcubes can
include subcube B.

m The y7'is a prime
implicant

B Minimal Expression of Incomplete

Minimal Sums (for incomplete
Boolean function)

Foran incomplete Boolean function, the don't-
care cells can be eithertreatedas 1 or 0.

m The rule of thumbis trying to use don't-care cells to
get a larger subcube as possible.

n Butget as fewer subcubes as possible.

Then proceed the Karnaughmap as a complete
Boolean function to getits SOP form.

MNote that it may exist more than one solutions. -,

The general
procedures for
determining the
prime implicants of
a Boolean function
is shown in flow
chart:

Form all subcubes of 21 1-cells
not properly contained in
any other single subcube

previously formed. Write the
comesponding product terms.

1

The list of
terms are
the prime
implicants

Boolean Functions

B Five-variable and Six-variable Karnaugh Maps

13
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Map for filv,wx,y,2) =Em(0,1, 2, 3,6,7, 11, 15,16, 17, 19,

same foreach map,
but the fifth one
represents the
differences of two
maps.

: . ". ’ |1 | | | | 23, 27, 31). (a) Subcubes for the minimal sum. (b)
F]\,ve—\.-ai-lable I\-Iaps o | u | || wlow | ol n Subcubes for the minimal product.

Five-variable o= = [»]a] | FE=IE

Kamaughmaps BERRBBEE M| Ee =

combinestwo four- ' ) T i

variable Karnaught TCWEYZ) = WXY +YZ + VWY ‘I o | |

maps together. " | 5 | T [ : ul o ol o] m >

The first fourinput o T _ el EBEEBE

variables are the “ 1 El it

| !

TV YZ) = (W W Z) (V' +Z) 0+ ™

B The Quine-McCluskey Method of Generating Prime Implicants and

Prime Implicates

Prime Implicants and the Quine-
McCluskey Method

Quine-McCluskey method can use the minterms
to getthe minimal expressions

s AB+A'B=B

Each productterm can be also represented by
0-1-dash notation, where 1 is used to denote an
uncomplemented variable, 0 is used to denote
complemented variable, and a dash for the
absence of a variable.

If there exists don’t-care conditions, it will use 1
to replaceit.

B Decimal Method for Obtaining Prime Implicants

Algorithm for Generating Prime

Implicants

Algonthm for generating pnme implicants

1. Express each minterm of the function in its binary
representation

5. Increase | by 1 and repeat Step 5. the increase of lis continued
until all terms are compared. The new list contains all those
implicants of the function that have one less variable than

2. Listthe minterms by increasing index. those implicants in the generating list.

3. Separate the sets of minterms of equal index with lines. 7. Each section of the new list formed has terms of equal index.

4. Leti=0. Steps 4, 5 and t are repeated on this list to form another list.

5. Combine each term of index | with each term of index i+1. For Recall that two terms combine only if they have their dashes in
gach pair of terms that can combine, i.e.. differin exactly on bit the same relatively positions and if they differ in exactly one bit
position, place the newly formed term (also in 0-1-dash position. . o
notation) in the section of index | of a new list, unless it is 5. The process terminates when no new list is formed
already present. In either event, place a check mark next to s All terms without check mark are prime implicant.

the two terms that combined (if not already checked). In the
comparison process, a checked term does not disqualify it from
further comparisons. After all pairs of terms with indices | and
1+1 are inspected in the onginal list. aline is drawn under the

last term in the new list.
To be continued B

® [OGIC DESIGN WITH MSI COMPONENTS AND PROGRAMMABLE LOGIC DEVICES

B Binary Adders and Subtracter

14
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Binary full adder

Truth table for adder
Si=XViGHXYC

Binary subtracter

Binary full subtracter
d\ :(X\ EBYi & b\)
Disy = (K3 + 00 + yiby )

XV G XY P PO x ¥ blb, d
=(x By o) 00 0|0 O 00 0|0 0
00 1|1 1
Ciar = OXGY; + XCi+ ViCH) R Y
001 11 0 001 1|1 0
1 0 0|0 1 1 0 0f0 1
10 1|1 0 1 0 1|0 0
1 1 0|1 0 1 1 0|0 0
L1 11 1 11 1011 1
B Decimal Adders & Comparators
Organization of a single-decade decimal adder Org‘firflzatlon ofa 1-bit comparator
Figure 5.11 Figure 3.13
Two input decimal digits
A,
r )
Ay Ay A Ay By By, By By A B,
o [ S0
(Carry to fca"y‘;mmd (AAy - Ay > BB, - --B,Bﬂl% o +(1’-; Aoz Biy - ByBy)
o s ) —BE_ - LITE (A A A= B
-M Single decade decimal adder REVOR T A A= BB BBy j+1 | comparator | L Gy Ao =By o By By
(A - AgAg < Bl - - - B Bg) ——t Ay A< By - ByBg)
] ] l l The 1rmhlahl? for decimal There are 5 inputs and 3 outputs for 1-bit comparator.
A AT adder is huge:
3 42 41 0, +The Inputs include A3-A0,
B3-B0and Cin
Sum decimal digit - The outputs include 23-Z0
B Decoders & Encoders
An n-to-2"-line decoder symbol. A 27to-n-line encoder symbol.
Figure 5.17 Figure 3.30
~ n-to-2" ~ 2"-to-n
——0 DEC O0}— __|o ENCODER |
— 1 1 — —1 | —
J2 O |2} O
El —_— I E ] —_2 2 E
24 2 2 & B . '
— . . & - o 7
. L] . o
. . —2n n—1f—
—n-1 2"-1}—
. J

This n-to-2"-line decoderis also called as *minterm generator.

B Multiplexers

15
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A 2"-to-1-line multiplexer symbol.

Figure 5.32
2"10-1
— 1l MUX
— Jrl
Data input lines : f 1 Output line
— I,
Enable — F
line
Su-1***8) Sy
Enable (or called as strobe) ‘ ‘ ‘
line provides more flexibility as
in case of decoders. Select input
lines

® Programmable Components & Programmable Logic Devices (PLDs)

General structure of PLDs.

Programmable logic devices Figue 348
Use large-scale integration technology to m.;‘m pmdui!-lcrm
implementa large circuits onto a single chip inverters lines
Programmable read-only memory (PROM) ; 4[Z "
Programmable logic array (PLA) ilrlput . ;:"; : ag;y . oluftpu:
Programmable array logic (PAL) nes nes
PAL is the trademark for Advanced Micro
Devices Inc.

B Programmable Read-Only Memory (PROMs) & Programmable Logic
Arrays (PLAs)

Struct fa PROM.
ructure ota Logic diagram ofan n x p x m PLA.

Figure 5.532
- Figure 3.33 Programsable and-aray
nto 2" decoder
2
j word
lines.
— neto-2"
n 0 DEC 0 Prugmnlmu.nble -
input * | " (and-armay AL * output
(address)  * | ° with N i t o (bin
lines buffer/ \ (memory amay) lines [
lemes.

a1 inverters) 2= 1 \ — it term

n'inputs / —‘ﬂTp_; >— 1

+ p product terms (minterms)
*m outputs

‘Word lines (2" minterm)

104

B Programmable Array Logic (PAL) Devices

16
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A simple four-input, three-output PAL device.

Figure 3.62

Aeanepue appauwedong

The or-array
has most

DUUD00UD”
./

Fixed or-armay
Ej

Sequential Logic Circuit #& =5 | & K
® Flip-Flops and Simple Flip-Flop Applications

B The Basic Bistable Element

Bistable (FF)
m If FF store 1 (x=1, y=0), its state or contentis 1
n If FF store 1 (x=0, y=1), its state or contentis 0

>0 0

B [atches & Progagation Delays

Propagation delays in an SR latch.

Figure 6.7
Latches s ﬂ
® Single-bit storage (memory) !
- : : |
m Changes state at any time due to input change !
P . . 1
= Must guarantee a minimum pulse width to avoid k ) m
metastability et et
1 1
= Fast and cheap (small number of transistors) 0 E e N
- - - - 1, I
= Often usedin high speed microprocessor design [
g p p g —! i-w—:wﬂ_ - —t g
' 1
Q % A
Time
See the section3.10.3 of chapter 2 for detailed descriptions of
" Propagation delays .

17
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B Master-Slave SR Flip-Flops (Pulse-Triggered Flip-Flops)

The Master-Slave SR Flip-Flop

Master-slaveflip-flops Masterlave SR flip-flop
= Also called pulse-triggered flip-flops Oy 0s
= Also called edge-triggered flip-flops § 50 5§ 0 0
Without control signal (enable or clock), the Clock (0) ¢ - —C ~
outputimmediately responses when input ,\Qn | 05 -
changes, such as latch. R Roop kop 0
= |t is also called as transparency. Vowr ™
If existing a control signal (enable or clock), the =
outputwill change with respectto control signal, Dc
such as flip-flop.

Masterslave SR flipflop. (a) Logic diagram using gated SR
latches. (b) Flip-flop action during the control signal. {c) Function
table where Q" denotes the output @ in resp to the inputs. (c)
Two logic symbols.

Fienr=6.12
Mt s W Flp ey
.l \rw Ym
¥ & ) 3
e o
T T
Inputs Outputs. {=o
s R ¢ o a* —5 e .
—c R e
o o IL [ [4 —r —Q}— SN
0 1 ITL 0 1 —_/ h -
0 JL 1 0 . -
— -Q—
el e _'
1 [ Undefined  Undefined —c T e 1+ & o
Y .
X X 0 0 ] —r Tep- I
o}

B The Master-Slave SR Flip-Flop

Timing diagram for a master-slave SR flip-flop.

Figure 6.3 The Master-Slave JK Flip-Flop
s _ T ol
R J—l ,—l_ Masicr-slave /i flip-flop

C _[ | J ] [ | | | —LD ‘—hz,. ﬁa‘ o
Ck\'l!:'_r c @ — ¢ o
K r o R’ @ @
=

Time

18



Inputs Outputs
— —y "Qf—
J K o 0
4
oo L] o 0 —K g
o 1 L] o 1
Lo L) 1 oo
—_—J Q0
[ TR I B B B —
_ —{ K QP
X X 0 o 0

B The Master-Slave JK Flip-Flop

The Master-Slave SR Flip-Flop

Master-slave flip-flops
= Also called pulse-triggered flip-flops
= Also called edge-trniggered flip-flops

§
Without control signal (enable or clock), the

outputimmediately responses when input Clock (©)

changes, such as latch. R
= It is also called as transparency.

If existing a control signal (enable or clock), the

output will change with respectto control signal,

such as flip-flop.

Master-slave JK flip-flop. (a) Logic diagram using gated
SR latches. (b) Function table where Q" denotes the output
Q in response to the inputs. (c) Two logic symbols.

Figure 6.14

B The Master-Slave D Flip-Flop
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Master-slave D flip-flop. (a) Logic diagram using master-
slave SRflip-flop (b) Two logic symbols.

Figure 6.16
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B The Master-Slave T Flip-Flop

Master-slave T flip-flop. (a) Logic diagram using a master-
slave JK flip-flop. (b) Function table where Q* denotes the
output Q in response to the inputs. (¢) Two logic symbols.

Figure 6.17
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B [Edge-Triggerred SR/JK/F/T Flip-Flop

Positive-edge-triggered JK flip-flop. (a) Logic diagram.
(b) Function table where Qf denotes the output @ in response to
the inputs. (c) Two logic symbols.

Figure 6.22

Choek 40

Positive-edge-triggered T flip-flop. (a) Logic diagram.
(b) Function table where Q* denotes the output Q in
response to the inputs. (¢) Two logic symbols.

Figurs 6.23
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Table 6.1 Simplified fip-flop function
lables. Q denotes Ihe current
slate and Q" denotes the
resulling state as a
consequence of the information
inputs and the control signal.
{a) SR tlip-flop. (b) Dflip-flop.
{c) JK flip-flop. (d) Tfhip-flop.

s R Q' D o
0 0 o 0 0
0 1 0 1 1
1 0 1
1 1
(a) )
T K o' T o'
0 0 o S
0 1 0 1 o
1 0 1
1 1 o
() (el } ”

Characteristic equations. (a) Derivation of characteristic
equation for an SR flip-flop. (b) Summary of
characteristic equations.

Figure 6.23

Flip-flop type  Characteristic equation

ol o 0 - 1
0 SR Q*=S+RQ (SR=0)
l:] 0 N g: JK o+ =J0 + KQ
D

0+ =D
@r=5+RQ (SR=0) T

O =Tg+TQ=T& @
(a) (b)

® Registers

A registeris a collection of flip-flops.

m A register contains finite flip-flops

m Each flip-flops stores O or 1.

= The combination of flip-flops is known as state of

content of the register

Registers that are capable of moving information
positionwise upon the occurrence of a clock
signalis called shift register, such as

= Serial-in, serial-out unidirectional shift register

m Serial-in, parallel-out unidirectional shift register

= Parallel-in unidirectional shift register

® (Counters

21

Table 6.2 Flip-flop ne:

les. O denotes the current state and Q" denotes

the resul a consequence of the information inputs and

the control I. () SR flip-flop. (5) D flip-llop. (&) JK flip-flop

() T flip-flof
s r o o D o |
] 0 0 o 0 0 0
0 ] 1 1 ] 1 o
0 1 0 0 1 0 1
0 I 1 [ 1 1 1
1 0 0o 1
1 o 1 I
1 I 0 1 Inputs not
| 1 1 I alowed

(] ihy
J K o o T @ [4]
0 0 o 0 0 0 o
0 0 1 I 0 1 1
L] 1 0 0 1 0 1
0 1 1 4] 1 I o
1 0 1] 1
I 0 1 1
1 1 0 1
1 1 1 )
(3} i)

Serial-in, serial-out unidirectional shift register.
Figure 6.26
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State diagram of a counter.

Figure 6.30

Counteris anotherexample of a register which @'\
producesa specified output pattern sequence.

= |s also called as pattern generator
The output pattern is a state of the counter.
= The total number of states is called its modulus.

= A counter has m distinct states, thenitis calleda
modulus-m counter or mod-m counter. \

1. 5 R #: 102
2. F HPEE 18 -] p*
3. TE = #k: 10 =x iT%

4. B R B 10 4

h. ITE 23 782/1020=77%

6. A== 238/1020=23%

T. A RARN3E Schematic Layout

8. CAD 34 4. Altera Quartus IT v9.1

9, FEXHIP w4
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1

N/A | N/A

N/A | N/A

N/A | N/A

32 |N/AN/A
33 | N/A|N/A
34 |N/A N/A
35 |N/A N/A
36 | N/A N/A
37 |N/A|N/A
38 | N/A|N/A
39 |N/A|N/A
40 |N/A|N/A

41

42 |N/A|N/A
43 |N/A|N/A
44 |N/A|N/A
45 |N/A|N/A
46 |N/A|N/A
47 |N/A|N/A
48 |N/A|N/A
49 |N/A|N/A
50 |N/A|N/A

51

52 |N/A|N/A
53 | N/A|N/A
54 |N/A|N/A
00 |N/A N/A
o6 |N/A N/A
of |N/AN/A
o8 | N/AN/A
09 |N/A N/A
60 | N/A |N/A

61

62 | N/A|N/A
63 | N/A|N/A
64 | N/A|N/A
65 | N/A|N/A
66 | N/A|N/A
67 |N/A |N/A
68 | N/A |N/A
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N/A | N/A

N/A | N/A

N/A | N/A

69 | N/A|N/A
70 [ N/A|N/A

71

72 |N/A|N/A
73 | N/A|N/A
74 |N/A|N/A
75 |N/A|N/A
76 | N/A|N/A
77 |N/A|N/A
78 | N/A|N/A
79 |N/A|N/A
80 | N/A N/A

81

82 |N/A N/A
83 |N/A |N/A
84 |N/A N/A
85 | N/A |N/A
86 | N/A|N/A
87 |N/A|N/A
88 | N/A|N/A
89 | N/A|N/A
90 |N/A|N/A

91

92 | N/A|N/A
93 | N/A|N/A
94 | N/A|N/A
95 | N/A|N/A
96 | N/A|N/A
97 | N/A|N/A
98 |N/A|N/A
99 |N/A |N/A
100 | N/A | N/A

101 | N/A|N/A
102 | N/A | N/A
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